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1.
Introduction to Stereo Vision



Introduction

[=] What is stereo vision?

a
a

The word “stereo” comes from the Greek for “solid”
Stereo vision: how we perceive solid shape

[=] Stereo matching

(m]

Take two or more images and estimate a 3D model of the scene by
finding matching pixels in the images and converting their 2D positions
into 3D depths.

[=] Application

OOo0Oo0oao

Photogrammetric matching of aerial images
Modeling of the human visual system
Robotic navigation and manipulation L &
View interpolation and image-based rendering g
3D model building :




Introduction




Introduction




2.
Epipolar Geometry



Two-frame structure from motion

[=] 3D rotation

o Also known as 3D rigid body motion or the 3D Euclidean transformation,

it can be written as

x'=Rx+t or x' =[Rt]x
R is a 3 x 3 orthonormal rotation matrix with RRT = [ and |R| = 1.

[=] Epipolar geometry
diX; =p1 = Rpo +t =R(doyXy) +t
dq[t]x%1= do[t]xR%o
doZ; " [t]xR%o= d1%; ' [t]x%;=0

[=] Epipolar constraint

J?lTEJ?O = 0, where E=[t]«R is the essential matrix.

epipolar plane

epipolar
lines

(R.1)



Two-frame structure from motion

@ Another perspective:

O
O
O

Epipolars: ¢, e;
Epipolar plane: ¢, ¢; and p define a plane
Epipolar line: Intersections of epipolar

plane with the image planes
Epipolar constraint: Corresponding :

epipolar plane

epipolar
lines

points on conjugate epipolar lines (R.9)

(29, R '@, —R ') = (Rag. &1, —t) = &1 - (t x Rag) = @1 ([t]. R)ag = 0
1 |

A

ll = Exo

;f:'fll =0 Xo in image 0 » [, inimage 1



Two-frame structure from motion

.. l, = EX ..
[m] %, inimage 0 L= "% , | inimage 1




Two-frame structure from motion
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Two-frame structure from motion
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Two-frame structure from motion

[=] How to calculate essential matrix?
el E&g=0

Tiori1€00 + YioTi1€01 +  Ti1€02
Tiolit€oo + YioYit€11 +  Yi1€12
rip€a0 T Yio€21 T €99

0

o Method 1: SVD with more than eight equations
o Method 2: make use of the condition that E is rank-deficient

FE =aF,+ (l —a)FEq

det |[aEo+ (1 —a)E1| =0



Rectification

@ Rectifying (i.e, warping) the input images so that corresponding horizontal
scanlines are epipolar lines

(a)

]

(c) (d)



= After rectification:

B

"'=ax +d(x,

Y),

Rectification

Scene Point : D
P=(X.Y.Z) Perspective Projection Eqns

X

Image Point X f —_—

p=(xy 7
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Plane sweep

@ Sweeping a set of planes through a scene:

\ /
\—/ Homography:

u=Hx

Input image &
Virtual camera

N

i




3.
Sparse Correspondence



3D curves and profiles

@ Surface reconstruction from occluding contours

(d) (e () (9]



4.
Dense Correspondence



Dense correspondence algorithms

= 4 steps:
O 1. matching cost computation;
O 2. cost (support) aggregation;
O 3. disparity computation and optimization;
O 4. disparity refinement.

= Local algorithm
O use a matching cost that is based on a support region

= Global algorithm
O make explicit smoothness assumptions and then solve a global
optimization problem



Similarity measures

m Sum-of-squared difference technique
O SSD is the template matching method done by finding the lowest
difference value between input and template. The differences are
squared in order to remove the sign.

N/2 N/2

ssp(p,d) = 2 z (Lh(x+iy+)) - L(x+iy+)*

j=—N/2i=—N/2

m Other methods
O Normalized correlation coefficients
O Mutual information
O Normalized gradient field



[.ocal methods

@ Local and window-based methods aggregate the matching cost by

summing or averaging over a support region.
O support region can be either two-dimensional at a fixed disparity
(favoring fronto-parallel surfaces), or three-dimensional in x-y-d space
(supporting slanted surfaces).

= Aggregation with a fixed support region can be performed using 2D
or 3D convolution. TS

Cl(r,y,d) =w(x,y,d)*x Co(x,y,d)




[.ocal methods

Aggregation window sizes and weights adapted to image content (Tombari,
Mattoccia, Di Stefano et al. 2008) (©) 2008 IEEE: (a) original image with selected evaluation
points; (b) variable windows (Veksler 2003); (c) adaptive weights (Yoon and Kweon 2006);
(d) segmentation-based (Tombari, Mattoccia, and D1 Stefano 2007). Notice how the adaptive
weights and segmentation-based techniques adapt their support to similarly colored pixels.



[.ocal methods

(b)

Uncertainty in stereo depth estimation (Szeliski 1991b): (a) input image; (b)
estimated depth map (blue is closer); (c) estimated confidence(red is higher). As you can see,
more textured areas have higher confidence.



Global optimization

m Many global methods are formulated in an energy-minimization
framework.

O the objective is to find a solution d that minimizes a global energy
E(d) = Eq(d) + \E,(d)



@ Simulated annealing

|

local minima

i A
In' )

global minimum

state

Global optimization

m Max-flow / Graph cut

®
(a) Image with seeds.

U

Background

@ terminal

terminal

(b) Graph.

(d) Segmentation results.

ft

Background

@ tennmal

terminal

(c) Cut.



Global optimization

m Dynamic programming
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Global optimization

m Segmentation-based techniques




Global optimization

m Z-keying and background replacement




5.
Multi-view stereo



Epipolar plane

m Epipolar plane image




3D reconstruction

@ Volumetric and 3D surface reconstruction

(b)

®



3D reconstruction

m Shape from silhouettes




m Shape from silhouettes

3D reconstruction
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