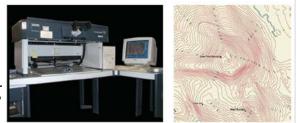
Computer Vision: Algorithms and Applications

Stereo Correspondence

Jing Luo | Megvii Tech Talk | Apr 2018

Reference: R. Szeliski. Computer Vision: Algorithms and Applications. 2010. 1.

1. Introduction to Stereo Vision


Introduction

• What is stereo vision?

- **D** The word "stereo" comes from the Greek for "solid"
- **D** Stereo vision: how we perceive solid shape
- Stereo matching
 - Take two or more images and estimate a 3D model of the scene by finding matching pixels in the images and converting their 2D positions into 3D depths.

Application

- **D** Photogrammetric matching of aerial images
- Modeling of the human visual system
- **D** Robotic navigation and manipulation
- View interpolation and image-based rendering
- **D** 3D model building

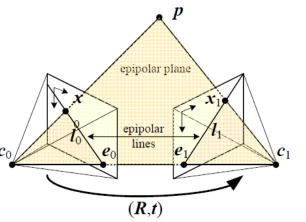
Introduction

Introduction

2. Epipolar Geometry

- 3D rotation
 - Also known as 3D rigid body motion or the 3D Euclidean transformation, it can be written as

$$x' = Rx + t$$
 or $x' = [R t]\overline{x}$

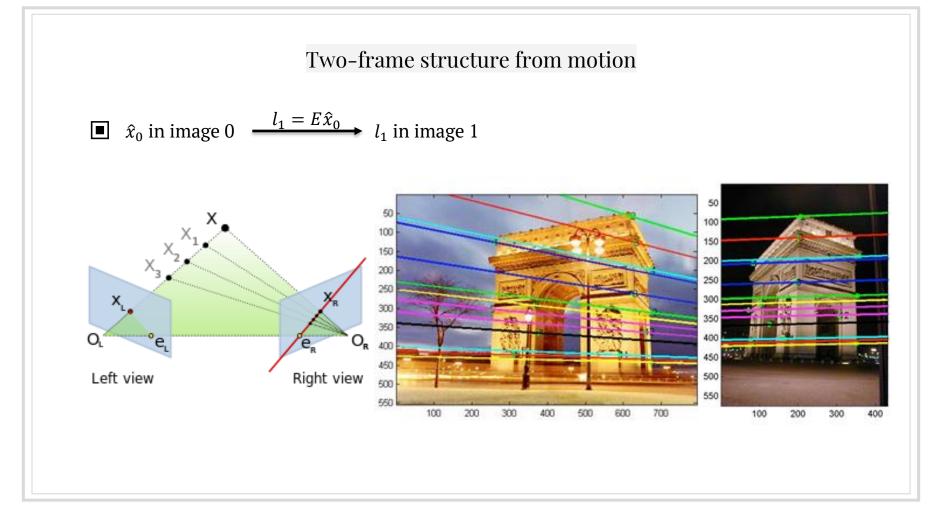

R is a 3 × 3 orthonormal rotation matrix with $RR^T = I$ and |R| = 1.

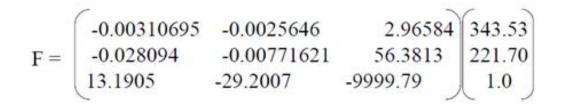
Epipolar geometry

 $d_{1}\hat{x}_{1} = p_{1} = Rp_{0} + t = R(d_{0}\hat{x}_{0}) + t$ $d_{1}[t]_{\times}\hat{x}_{1} = d_{0}[t]_{\times}R\hat{x}_{0}$ $d_{0}\hat{x}_{1}^{T}[t]_{\times}R\hat{x}_{0} = d_{1}\hat{x}_{1}^{T}[t]_{\times}\hat{x}_{1} = 0$

Epipolar constraint

 $\hat{x}_1^T E \hat{x}_0 = 0$, where $E = [t]_{\times} R$ is the essential matrix.

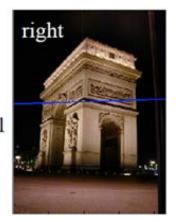

Another perspective:

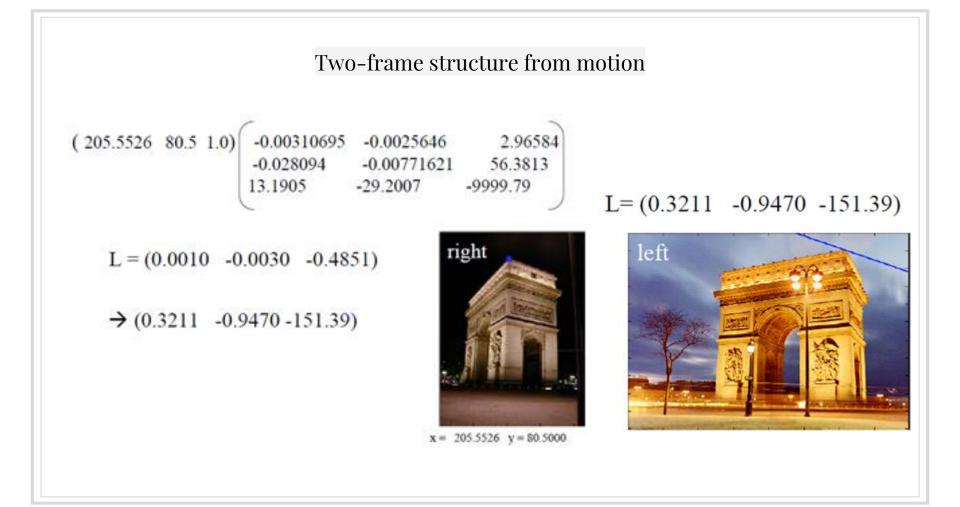

- **D** Epipolars: $e_0 e_1$
- **\square** Epipolar plane: $c_0 c_1$ and p define a plane
- Epipolar line: Intersections of epipolar plane with the image planes
- Epipolar constraint: Corresponding points on conjugate epipolar lines

n

$$(\hat{x}_0, R^{-1}\hat{x}_1, -R^{-1}t) = (R\hat{x}_0, \hat{x}_1, -t) = \hat{x}_1 \cdot (t \times R\hat{x}_0) = \hat{x}_1^T([t]_{\times}R)\hat{x}_0 = 0$$

$$\hat{x}_1^T \boldsymbol{l}_1 = 0$$
 \hat{x}_0 in image 0 $\begin{array}{c} \boldsymbol{l}_1 = E \hat{x}_0 \\ & & \end{pmatrix} \quad \boldsymbol{l}_1$ in image 1





x = 343.5300 y = 221.7005

0.0001	0.0295		
0.0045	\rightarrow	0.9996	
-1.1942		-265.1531	

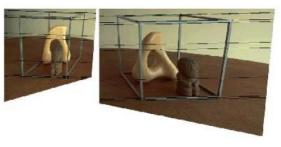
normalize so sum of squares of first two terms is 1 (optional) 0.0295 0.9996 -265.1531

How to calculate essential matrix?

 $\hat{\boldsymbol{x}}_1^T \boldsymbol{E} \, \hat{\boldsymbol{x}}_0 = 0$

$x_{i0}x_{i1}e_{00}$	+	$y_{i0}x_{i1}e_{01}$	+	$x_{i1}e_{02}$	+	
$x_{i0}y_{i1}e_{00}$	+	$y_{i0}y_{i1}e_{11}$	+	$y_{i1}e_{12}$	+	
$x_{i0}e_{20}$	+	$y_{i0}e_{21}$	+	e_{22}	=	0

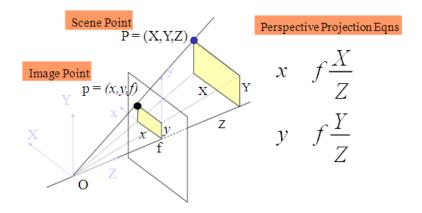
- □ Method 1: SVD with more than eight equations
- □ Method 2: make use of the condition that E is rank-deficient

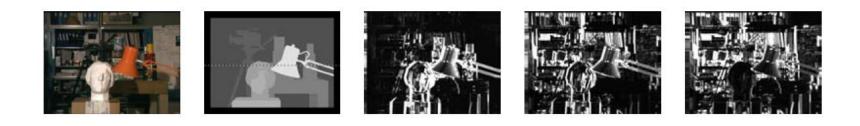

 $\boldsymbol{E} = \alpha \boldsymbol{E}_0 + (1 - \alpha) \boldsymbol{E}_1$

 $\det |\alpha \boldsymbol{E}_0 + (1-\alpha)\boldsymbol{E}_1| = 0$

Rectification

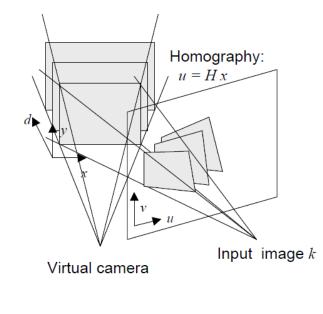
Rectifying (i.e, warping) the input images so that corresponding horizontal scanlines are epipolar lines

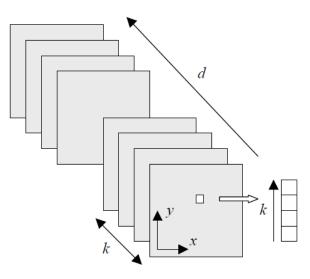




Rectification

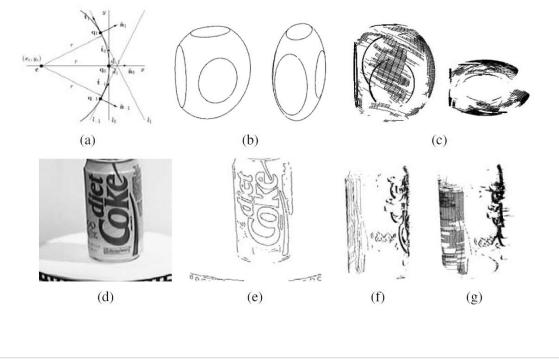
• After rectification:


$$d = f \frac{B}{Z}$$
$$x' = x + d(x, y), \quad y' = y$$



Plane sweep

Sweeping a set of planes through a scene:



3. Sparse Correspondence

3D curves and profiles

Surface reconstruction from occluding contours

4. Dense Correspondence

Dense correspondence algorithms

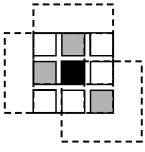
■ 4 steps:

- □ 1. matching cost computation;
- □ 2. cost (support) aggregation;
- **□** 3. disparity computation and optimization;
- □ 4. disparity refinement.
- Local algorithm
 - use a matching cost that is based on a support region
- Global algorithm
 - make explicit smoothness assumptions and then solve a global optimization problem

Similarity measures

- Sum-of-squared difference technique
 - SSD is the template matching method done by finding the lowest difference value between input and template. The differences are squared in order to remove the sign.

$$SSD(\vec{p},\vec{d}) = \sum_{j=-N/2}^{N/2} \sum_{i=-N/2}^{N/2} (I_1(x+i,y+j) - I_2(x+i,y+j))^2$$

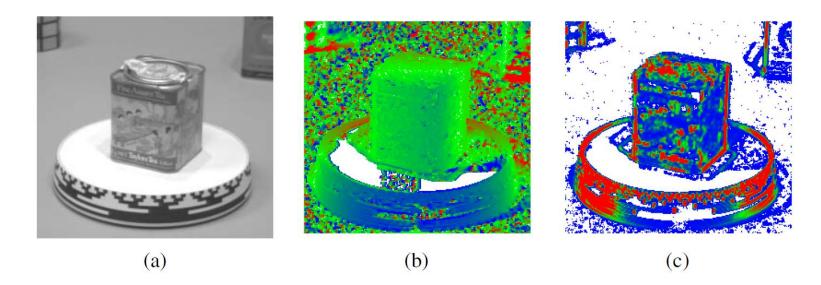

Other methods

- Normalized correlation coefficients
- □ Mutual information
- □ Normalized gradient field

Local methods

- Local and window-based methods aggregate the matching cost by summing or averaging over a support region.
 - support region can be either two-dimensional at a fixed disparity (favoring fronto-parallel surfaces), or three-dimensional in x-y-d space (supporting slanted surfaces).
- Aggregation with a fixed support region can be performed using 2D or 3D convolution.

$$C(x, y, d) = w(x, y, d) * C_0(x, y, d)$$

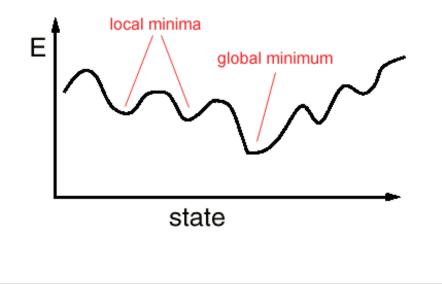


Local methods

Aggregation window sizes and weights adapted to image content (Tombari, Mattoccia, Di Stefano *et al.* 2008) © 2008 IEEE: (a) original image with selected evaluation points; (b) variable windows (Veksler 2003); (c) adaptive weights (Yoon and Kweon 2006); (d) segmentation-based (Tombari, Mattoccia, and Di Stefano 2007). Notice how the adaptive weights and segmentation-based techniques adapt their support to similarly colored pixels.

Local methods

Uncertainty in stereo depth estimation (Szeliski 1991b): (a) input image; (b) estimated depth map (blue is closer); (c) estimated confidence(red is higher). As you can see, more textured areas have higher confidence.

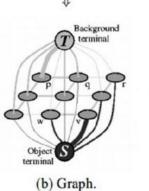

- Many global methods are formulated in an energy-minimization framework.
 - □ the objective is to find a solution d that minimizes a global energy

 $E(d) = E_d(d) + \lambda E_s(d)$

$$E_d(d) = \sum_{(x,y)} C(x, y, d(x, y))$$

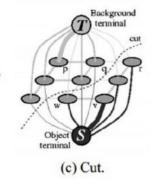
$$E_s(d) = \sum_{(x,y)} \rho(d(x,y) - d(x+1,y)) + \rho(d(x,y) - d(x,y+1))$$
$$\rho_d(d(x,y) - d(x+1,y)) \cdot \rho_I(||I(x,y) - I(x+1,y)||)$$

Simulated annealing

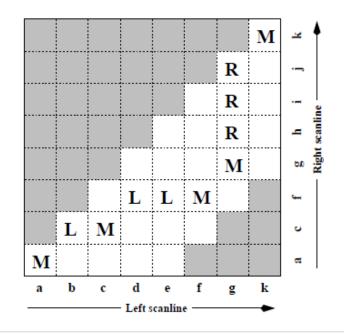


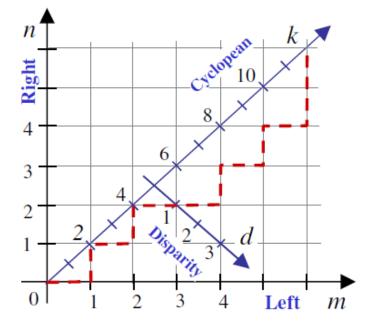
Max-flow / Graph cut

 \Rightarrow

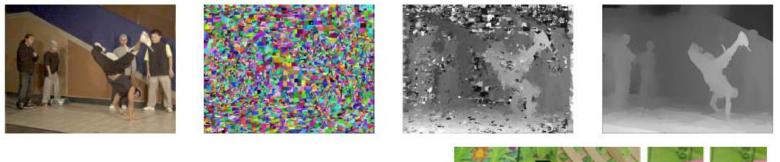


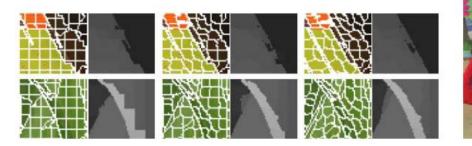
(a) Image with seeds.

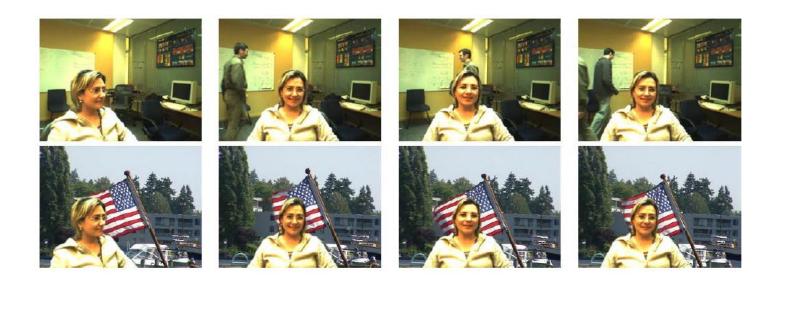


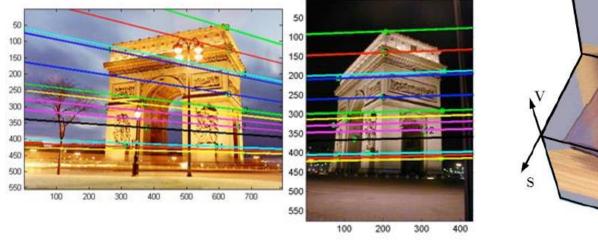

(d) Segmentation results.

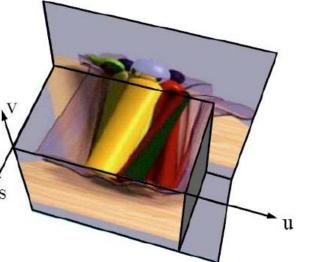
↑



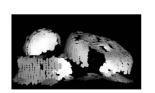

Dynamic programming


Segmentation-based techniques


Z-keying and background replacement



Epipolar plane

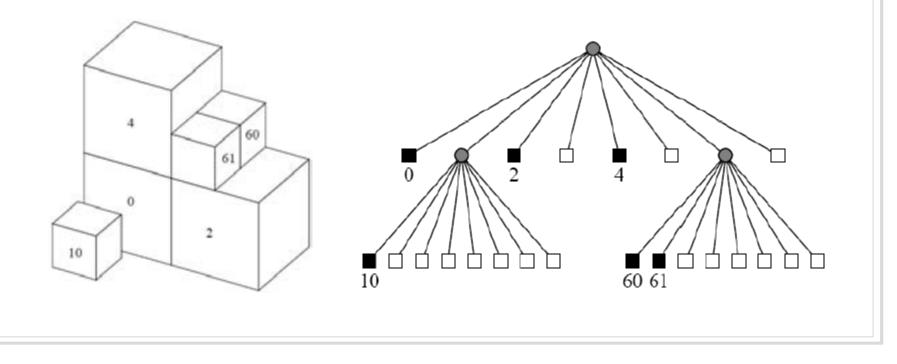

• Epipolar plane image

3D reconstruction

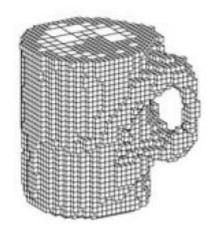
■ Volumetric and 3D surface reconstruction

(b)

(d)



3D reconstruction


Shape from silhouettes

3D reconstruction

Shape from silhouettes

